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Abstract. We present a simple solution to the problem of two interacting electrons confined
by a three-dimensional parabolic potential. The method relies on the diagonalization of the
Hamiltonian in reduced Hilbert space. The basis functions are the solutions of the centre-of-
mass motion and the relative motion of the two particles without Coulomb interaction. Since the
Coulomb interaction only affects the relative motion, the matrix elements of the Hamiltonian are
easily evaluated analytically. The numerical diagonalization is readily performed as only a few
basis functions are needed to obtain a good precision on the energy levels: six basis functions
ensure a precision better than 0.1% on the ground-state energy, while three basis functions are
enough to obtain a precision better than 1%. The results are analysed and compared to previously
published results. They are also used to evaluate the precision of a first-order perturbation
calculation for the Coulomb interaction and an approach based on a 1/r2 approximate interaction
potential for which there exists an analytical solution.

1. Introduction

In the last few years, there has been an increasing interest in the problem of quantum dots
containing a few electrons [1]. These few-body systems are very attractive since they show
properties that are strongly dependent on the number of electrons. They form the basis of
low-consumption and fast electronic and optoelectronic devices. We cite for example the
recent interest in single-electron-memory devices [2–4].

Most of the experimental and theoretical investigations in this field have focused on
quantum dots made out of laterally confined two-dimensional electronic gases. With the
rapid evolution of fabrication techniques, the interest in other types of quantum dots should
grow in the near future. The experimental investigations have allowed the characterization of
the energy level structure of a quantum dot [5–7]. Interesting phenomena like singlet–triplet
transitions have been observed on systems containing as few as two electrons [5].

From a theoretical point of view, these few-body systems represent a challenging
problem. The standard tools of the condensed-matter physicist like the many-body
techniques relying on Hartree or Hartree–Fock approximations are often not sufficient since
the exchange and correlation energies can be far from negligible [8]. A fully quantum
mechanical treatment is needed. In the general case, this requires numerical calculations
that can become quite time-consuming as the number of electrons grow.

There are, however, a few problems that can be solved easily. One is the problem of
two interacting electrons confined in a quantum dot defined by a three-dimensional parabolic
potential. This is a next-to-trivial problem. A two-electron system is obviously the minimal
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system for studying particle interaction. The parabolic potential can be considered as a
zeroth-order approximation of any isotropic confining potential. This simple problem is
nevertheless very useful since it allows the evaluation of the order of magnitude of many
parameters as a function of the localization of the electrons. Additionally, the solutions can
serve as a reference for estimating various approximation schemes or as a test case for more
elaborate numerical treatments.

The problem of two interacting electrons in a three-dimensional parabolic potential has
previously been studied by Zhuet al [9]. Their treatment is based on asymptotic series
evaluated for both large and short distances between the interacting particles. The problem
is solved by connecting those asymptotic expressions using a matching process described
in [9]. Their results show interesting features such as crossing of levels as the strength of
the parabolic potential is varied.

In the present paper, we offer an alternative solution to this problem. Our method relies
on the standard diagonalization of the Hamiltonian in a reduced Hilbert space, using the
eigenstates of the system without Coulomb interaction as a basis. Since only the relative
motion of the electrons is affected by the Coulomb repulsion, the matrix elements are easily
evaluated analytically. Only a few basis functions are needed to achieve a good precision,
so the numerical diagonalization is readily performed. Our method leads to the solution in a
much simpler manner than the method of [9]. Additionally, our resulting eigenfunctions are
given by a single expression valid over all space while the method of [9] leads to various
expressions, depending on the distance between the electrons.

In section 2, we present the theoretical framework underlying our approach. In section 3,
the eigenstates are determined for various degrees of confinement. The energy levels are
discussed and compared to previously published results. The variation of the wavefunctions
with the strength of the quantum-dot potential is illustrated. The results are also used to
evaluate the precision of two approximation methods: a first-order perturbation calculation
for the Coulomb interaction and an approach based on an approximate 1/r2 potential for
which there is an analytical solution. The main results are summarized in section 4.

2. Theoretical framework

The time-independent Schrödinger equation describing two interacting electrons of effective
massm∗ in a quantum dot defined by a three-dimensional parabolic potential of frequency
ω is

[
− h̄2

2m∗
∇2

1 +
1

2
m∗ω2r2

1 −
h̄2

2m∗
∇2

2 +
1

2
m∗ω2r2

2 +
e2

4πε|r1− r2|
]

︸ ︷︷ ︸
H

9NLM,nlm(r1, r2)

= ENL,nl9NLM,nlm(r1, r2) (1)

where ε is the static dielectric permittivity of the medium. The meaning of the various
indices are clarified in the following. There are two lengthscales that are related to the
problem and that will be used later: the oscillator characteristic lengthl0 = [h̄/(m∗ω)]1/2

and the effective Bohr radius for an hydrogenic donor impuritya∗0 = 4πεh̄2/(m∗e2).
It is quite straightforward to separate this problem in a centre-of-mass motion and

a relative motion characterized by the coordinatesR = (r1 + r2)/2 and r = r1 − r2,
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respectively. The resulting Schrödinger equations are[
− h̄2

2(2m∗)
∇2
R +

1

2
(2m∗)ω2R2

]
︸ ︷︷ ︸

HCM

8NLM(R) = ENL8NLM(R) (2)

and [
− h̄2

2(m∗/2)
∇2
r +

1

2

(
m∗

2

)
ω2r2+ e2

4πεr

]
︸ ︷︷ ︸

Hrel

φnlm(r) = Enlφnlm(r). (3)

Let us first consider the centre-of-mass motion. Equation (2) is the Schrödinger equation
for a three-dimensional harmonic oscillator with a particle of mass 2m∗. It is a textbook
problem to find its solutions in spherical coordinates [10, 11]. The eigenenergies are given
by

ENL =
(

2N + L+ 3

2

)
h̄ω (4)

while the eigenfunctions are given by

8NLM(R) = 23/4

l
3/2
0

YLM(R)fNL

(√
2R

l0

)
(5)

whereYLM(R) are spherical harmonics and the numbersN andL run independently from
zero to infinity. The radial functionsfNL(ρ) are defined by†

fNL(ρ) = KNLρL exp(−ρ2/2)
N∑
q=0

cNL,2qρ
2q (6)

where the coefficientscNL,2q follow the recursion relation

cNL,0 = 1 cNL,2q = (q −N − 1)

q(q + L+ 1/2)
cNL,2q−2. (7)

The coefficientscNL,2q thus define an even polynomial that contains(N + 1) terms. The
factorKNL ensures that the functionsfNL(ρ) are normalized

KNL =
[ N∑
q ′,q=0

cNL,2q ′cNL,2q
1

2
0

(
L+ q + q ′ + 3

2

)]−1/2

. (8)

For the relative motion, equation (3) does not possess a simple analytical solution.
We thus proceed to the diagonalization of the Hamiltonian in reduced Hilbert space. The
eigenfunctions of the problem without Coulomb interaction are used as basis functions.
In the absence of Coulomb interaction, equation (3) reduces to the problem of a three-
dimensional harmonic oscillator with a particle of massm∗/2. The corresponding eigenstates
are labelled with a superscript ‘0’. The eigenenergies are

E0
νl =

(
2ν + l + 3

2

)
h̄ω (9)

† The radial functionsfNL(r) can be expressed in terms of the confluent hypergeometric function1F1 (see
[8]). We use the explicit development of the series in the text since it leads to an expression that can easily be
implemented numerically for the matrix elements that follow in equation (11).
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and the eigenfunctions are

φ0
νlm(r) =

1

23/4l
3/2
0

Ylm(r)fνl

(
r√
2l0

)
(10)

where ν and l run independently from zero to infinity. Using these functions as basis
functions, we evaluate the matrix elements of the relative-motion HamiltonianHrel including
Coulomb interaction, as defined by equation (3). These matrix elements are diagonal in all
indices exceptν

Hrel
ν ′lm;νlm = δν ′νE0

νlm +
l0h̄ω

2
√

2a∗0
Kν ′lKνl

ν ′∑
q ′=0

ν∑
q=0

cν ′l,2q ′cνl,2q0(l + 1+ q + q ′). (11)

The diagonalization ofHrel is thus a very easy task. The matrix elements are readily
evaluated and only a few basis functions are needed to obtain very good precision, as we
will see in the next section. With(νmax+1) basis functions, the result of the diagonalization
gives the eigenenergiesEnl and their related coefficientsdnν , the integer indexn running
from zero toνmax . The eigenfunctions of the relative motion are then given by

φnlm(r) =
νmax∑
ν=0

dnν φ
0
νlm(r). (12)

By combining the results, the eigenstates of the total Hamiltonian defined by equation (1)
are characterized by the energies

ENL,nl = ENL + Enl (13)

and the wavefunctions:

9NLM,nlm(r1, r2) = 8NLM(R)φnlm(r)

= 1

l30
YLM(R)fNL

(√
2R

l0

)
Ylm(r)

νmax∑
ν=0

dnν fνl

(
r√
2l0

)
. (14)

We have yet to consider the spin. For such a two-particle problem, it can easily be
introduced. The spatial properties related to the exchange of the two-particles are only
governed by the relative-motion eigenfunction. It is symmetric (antisymmetric) for even
(odd) values ofl. The antisymmetrization of the total wavefunction including spin is then
readily obtained by multiplying the wavefunction by a singlet (triplet) spin state for even
(odd) values ofl.

3. Results and discussion

Since the eigenenergies are independent of the magnetic numbersm andM, the various
levels are identified by the simplified notation|NL, nl〉 whereN = 0, 1, 2, . . . andL =
S,P,D, . . . characterize the centre-of-mass motion whilen = 0, 1, 2, . . . and l = s, p, d, . . .
characterize the relative motion. Note that, in order to avoid the introduction of additional
definitions, we do not use the so-called ‘principal quantum numbers’ [11](2L + 1) and
(2l+1) to identify the levels. The total degeneracy of the levels is given by(2L+1)(2l+1)θl
whereθl represents the spin degeneracy and takes a value of one for even values ofl and
a value of three for odd values ofl.

Figure 1 presents the relative-motion energyEnl as a function of the ratiol0/a∗0. This
ratio gives an estimate of the relative strengths of the parabolic and Coulomb potentials.
When l0 � a∗0, it is the strong confinement regime where the Coulomb repulsion can
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Figure 1. Relative-motion energy levels (Enl ) as a function of the ratiol0/a∗0. The various
linetypes identify the levels according to the orbital quantum numbers of the relative-motion
wavefunctions. The quantum numbersn and l are indicated for the lowest levels. As an
illustration, for GaAs,a∗0 ≈ 105 Å and the characteristic energy of the parabolic potential is
h̄ω ≈ 0.1 meV for l0/a∗0 = 10 andh̄ω ≈ 10 meV for l0/a∗0 = 1.

be considered as a perturbation. Whenl0 � a∗0, the parabolic potential still ensures the
confinement of the two electrons although the Coulomb repulsion contributes the most to the
energy. The various linetypes identify the orbital quantum numbers of the relative-motion
wavefunctions of the various levels. The lowest levels are also identified by their quantum
numbersn and l. Each evaluation has been performed with eight basis functions. This
ensures a precision† better than 0.2% in the worst case (the worst case being the 3s level
nearl0/a∗0 = 3.0). In most cases, such a precision can be obtained with a smaller number
of basis functions. For the 0s level, six basis functions give a precision better than 0.1%
over the range ofl0/a∗0 values considered, while only three basis functions are necessary
for a precision of 1%. For the 0p level, a 0.1% precision requires three basis functions
while two basis functions ensure a 1% precision. We thus see that a good precision can be
obtained with a very small computational effort.

Only the s-state wavefunctions do not vanish at the origin. Consequently, the related
levels are the most sensitive to the Coulomb interaction. Since the states of various
symmetries are differently affected by the Coulomb interaction, there are a lot of level
crossings. The first level crossing appears between the singlet 1s level and the triplet 0f
level nearl0/a∗0 = 5.3 at Enl = 6.3h̄ω. It is interesting to point out that all the levels
characterized by a givenn value become quasi-degenerate at very high values ofl0/a

∗
0.

This only becomes evident forl0/a∗0 much larger than ten (not shown on figure 1), but it
can already be felt atl0/a∗0 = 10 by noting that the four lowest levels are characterized

† The precision of an energy eigenvalue is estimated by comparing it to a reference value obtained in the following
way. For a given level, the energies evaluated with different numbers (N ) of basis functions (up to 32 functions
in our work) are plotted as a function of 1/N . The reference value is then taken as the asymptotic value when
1/N tends to zero.
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by n = 0. This behaviour is a consequence of the accidental degeneracy related to the
dynamical symmetry of the repulsive Coulomb potential. In fact, the level crossings occur
due to the fact that we go from the accidental degeneracy of the harmonic potential at small
l0/a

∗
0 values to that of the repulsive Coulomb potential at largel0/a

∗
0 values.

Figure 2 presents the total energyENL,nl as a function of the ratiol0/a∗0. The numbers
on the lowest levels indicate the total degeneracy. The various linetypes identify the levels
that correspond to a given centre-of-mass motion energy (ENL). The various center-of-mass
states that have the same energy are identified by theirN andL values on the legend. With
the help of the curves provided in figure 1, one can easily identify the exact nature of the
various levels of figure 2. All the curves corresponding to a given linetype (i.e. a given
centre-of-mass energy) in figure 2 reproduce the curves of figure 1, up to a constant energy
value. The lowest level of a given linetype in figure 2 thus corresponds to a relative-motion
0s state, the second lowest to a relative-motion 0p state, and so on. For example, the first
band crossing that occurs atENL,nl = 7.25h̄ω near l0/a∗0 = 5.8 involves the|0P, 0s〉 and
|0S, 0d〉 levels and is thus a singlet–singlet crossing.
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Figure 2. Energy levels (ENL,nl) as a function of the ratiol0/a∗0. The various linetypes identify
the levels corresponding to a given centre-of-mass energy (ENL). The total degeneracy (product
of the centre-of-mass, relative-motion and spin degeneracies) of the lowest levels is indicated
by the numbers.

The curves in figure 2 can be compared with those provided by Zhuet al in figure 2
of [9]. The latter figure presents results forl0/a∗0 varying from 0 to 5.6†. We obtain the
same energies except for the lowest level (|0S, 0s〉) when l0/a∗0 > 3.0, the difference being
about 3% atl0/a∗0 = 5.6, and for the|0S, 0g〉 level, our curve lying a little lower. The
energy difference of the lowest level may be due to some fortuitous error in figure 2 of
[9]. The variation of the energy for all the levels of the type|NL, 0s〉 should be similar up

† The relation between the parameterγ defined in [6] and our notation is:l0/a∗0 =
√

2/γ .
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to an additional constant term (ENL,0s = (2N + L + 3/2)h̄ω + E0s). It is the case in our
figure 2 and for all but the lowest level in the figure presented by Zhuet al. Note that the
levels |0S, 1p〉, |0P, 0f〉, |1S, 0p〉 and |0D, 0p〉 (the latter two being degenerate) are missing
in figure 2 of [9].

It is well known that, for a parabolic potential, the many-body effects due to Coulomb
interaction are not directly accessible to far-infrared (FIR) spectroscopy [12, 13]. This can
easily be seen here: a dipolar transition between relative-motion eigenstates is not allowed
since a change1l = +/ − 1 also implies a change of the spin state. It is interesting
to note that interband spectroscopy has recently been used to highlight electron–electron
interactions by looking at excitonic transitions in InAs self-assembled quantum dots [14].

Unlike the method of [9], our method provides for the wavefunction, a single expression
that is valid over all space. It is interesting to see to what extent the Coulomb repulsion
affects the electron relative motion. Figure 3 presents the radial part of the relative-
motion wavefunction for the lowest level (0s), this wavefunction being quite sensitive to
Coulomb interaction. One can appreciate that, as the electron confinement decreases (l0/a

∗
0

increases), Coulomb interaction becomes more effective in determining the shape of the
wavefunction by forcing the electrons to repel each other. To obtain a given precision on the
wavefunctions, one needs more basis functions than for the evaluation of the eigenenergies.
This is especially true for the short-range part of the relative-motion wavefunction, as already
noted by Pfannkucheet al for a two-dimensional parabolic potential [8]. For example,
eight basis functions ensure at least a precision of the order of 1% on the value of the 0s
wavefunction forr > l0 and for all values ofl0/a∗0. On the other hand, the error on the
value of the wavefunction at the origin exceeds 10% forl0/a

∗
0 > 2. At l0/a∗0 = 5, this

difference can be brought down to less than 1% with 17 basis functions. The wavefunctions
on figure 3 have been evaluated with 32 basis functions and can thus be considered exact
results.
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Figure 3. Radial part of the wavefunction for the lowest level (0s) of the relative motion for
various values of the ratiol0/a∗0.
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To get a broader picture of the effect of the Coulomb interaction on the wavefunctions,
we plot in figure 4 the mean separation between the electrons (first moment of the radial
part of the relative-motion wavefunction) as a function ofl0/a

∗
0 for the various levels. The

linetypes again identify the curves according to the orbital quantum numbers of the relative
motion. We see that the variation of the mean separation decreases asl and asn increase.
For the range ofl0/a∗0 values considered, the separation almost doubles for the 0s level
while the increase is less than 20% for the 1d level.

0 2 4 6 8 10
1.5

2.0

2.5

3.0

3.5

*

2s

1d

1p

0f

1s

0d

0p

0s

 s
 p
 d
 f

E
le

ct
ro

n 
m

ea
n 

se
pa

ra
tio

n:
 <

r>
 / 

l
0

l
0
 / a

0

Figure 4. Mean separation between the electrons (first moment of the radial part of the relative-
motion wavefunction) as a function ofl0/a∗0 for the lowest levels. The various linetypes identify
the orbital quantum numbers of the relative motion.

We now consider two approximation methods for evaluating the level energies. In
the first one, the Coulomb repulsion is considered as a perturbation that is evaluated to
first order. The relative-motion approximate eigenenergies then correspond to the diagonal
elements of the matrix defined in equation (11). This approximation is also considered in
[9] although no direct comparison with more exact results are provided. We perform such
a comparison further below.

To obtain the second approximation method, we note that the Coulomb interaction can
be written as

e2

4πεr
= e2ηl0

4πεr2
+ e

2(r − ηl0)
4πεr2

(15)

where η is a dimensionless parameter. By dropping the second term on the right-hand
side, one obtains a 1/r2 potential that should provide a good approximation if the radial
part of the relative-motion wavefunction is well concentrated aroundηl0. This approximate
potential is of interest since it leads to an analytical solution, as sketched in the appendix,
with the relative-motion energy levels

Enl =
(

2n+ 1/2
√

1+ 4[l(l + 1)+ ηl0/a∗0] + 1
)
h̄ω. (16)



Two electrons in 3D parabolic potential 7865

In our calculations, we have arbitrarily opted for the simplest choice for the parameter
η. For a given relative-motion state characterized by the quantum numbers (n, l,m),
we have used the mean distance between the two electrons (〈r〉/l0) evaluated with the
function φ0

nlm(r) (equation (10)) to which the eigenstate reduces in absence of Coulomb
repulsion.

Figure 5 shows the relative-motion energy levels evaluated with the two approximation
methods along with the more exact results obtained by diagonalizingHrel (equation (11))
with eight basis functions.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

´
ω

*

1s

0d

0p

0s

 diag. with 8 functions
 1st-order perturbation

 1/r2 potentialR
el

at
iv

e-
m

ot
io

n 
en

er
gy

:  
E nl
 /

l
0
 / a

0

Figure 5. Relative-motion energy levels (Enl ) as a function of the ratiol0/a∗0 as evaluated with
the first-order perturbation calculation (dashed curves) and with the approximate 1/r2 potential
(dotted curves). They are compared with the more exact results obtained from the diagonalization
of the relative-motion Hamiltonian with eight basis functions (full curves).

The precision of the first-order perturbation calculation increases withl andn. This is
a simple consequence of the fact that the true wavefunction is less affected by the Coulomb
repulsion asl and n increase, as indicated by figure 4, so the zeroth order wavefunction
remains a good approximation over a wide range ofl0/a

∗
0 values. For the ground state

(0s), this approximation provides a precision better than 10% on the energy difference
(E0s− 1.5)h̄ω up to l0/a∗0 ≈ 1.1. For the 1s and 0p levels, a similar precision is obtained
up to l0/a∗0 ≈ 2.1 andl0/a∗0 ≈ 3.2, respectively.

The 1/r2 potential gives acceptable results only for then = 0 states. This is due to the
fact that the validity of the 1/r2 potential is expected to increase with the localization of the
relative-motion wavefunction and only then = 0 states have a ‘one-lobe’ radial function
that is somewhat localized. Note that for the 0s level, the wavefunction lies very close to
the origin, so this potential still does not provide a very good approximation since 1/r2

varies rapidly.
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4. Conclusion

We have presented a simple solution to the problem of two interacting electrons confined
by a three-dimensional parabolic quantum dot. The method is based on the diagonalization
of the relative-motion Hamiltonian in reduced Hilbert space. This diagonalization is easily
performed since the matrix elements are evaluated analytically and only a few basis functions
are needed to obtain a good precision on the energy levels.

The results agree with those previously published by Zhuet al [9]. However, our
method is more straightforward and easier to implement numerically. Furthermore, unlike
the method of [5], our approach gives a single expression that is valid over all space for
the wavefunction.

Two approximation schemes have been considered. The first-order perturbation
approach has been seen to be quite useful for estimating the level energies. The approximate
1/r2 potential withη = 〈r〉/l0 has been seen to provide a decent approximation only for
the n = 0 relative-motion states.
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Appendix

In this appendix, we sketch the evaluation of the energy levels of the approximate 1/r2

interaction potential. In that case, the relative-motion Schrödinger equation (equation (3))
becomes [

− h̄2

2(m∗/2)
∇2
r +

1

2

(
m∗

2

)
ω2r2+ e2ηl0

4πεr2

]
φnlm(r) = Enlφnlm(r). (A1)

We introduceρ = r/(√2l0) and we look for a solution of the form

φnlm(ρ) = Ylm(ρ)unl(ρ)

ρ
. (A2)

The radial equation satisfied byunl(ρ) can be written in the following form[
− d2

dρ2
+ α(α + 1)

ρ2
+ ρ2− 2Enl

h̄ω

]
unl(ρ) = 0 (A3)

where

α = −1/2+ 1/2
√

1+ 4[l(l + 1)+ ηl0/a∗0]. (A4)

Equation (A3) is identical to the radial equation obtained in the problem of an harmonic
oscillator if we replaceα by the orbital quantum numberl. The eigenenergies for the
harmonic oscillator problem have already been expressed in terms ofl in equations (4) and
(9). Replacingl by α, one readily obtains the eigenenergies of the 1/r2 interaction potential
as given by equation (16).
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